BACKPAPER EXAM, ALGEBRA III, TOTAL MARKS: 100

All questions carry equal marks.
(1) Is $\mathbf{F}_{3}[x] /\left(x^{2}+x+1\right)$ a field? Is $\mathbf{F}_{5}[x] /\left(x^{2}+x+1\right)$ a field?
(2) Determine all ideals of $\mathbb{R}[[t]]$. Here $\mathbb{R}[[t]]$ is the ring of all formal power series (expressions of the form $\sum_{n=0}^{\infty} a_{n} T^{n}$) in one variable t with real coefficients a_{n}.
(3) Classify all rings of order 10 .
(4) Classify all finite abelian groups of order 144.
(5) Determine the ring obtained from $\mathbb{R} \times \mathbb{R}$ by inverting the element $(2,0)$.
(6) Let α be a Gauss integer, assume α has no integer factor and $\bar{\alpha} \alpha$ is a square integer. Then show that α is a square in $\mathbb{Z}[i]$.
(7) Write the abelian group generated by two elements x and y, with the relation $3 x+4 y=0$, as a direct sum of cyclic groups.
(8) Classify finitely generated module over the ring $\mathbb{C}[\epsilon]$ where $\epsilon^{2}=0$.
(9) Find a direct sum of cyclic groups isomorphic to the abelian group presented by the matrix

$$
\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right)
$$

(10) Classify up to similarity all 3×3 matrices A over the complex numbers satisfying $A^{3}=I$.

